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Seismic waveform data are generally contaminated by noise from various sources. To date,
the most common noise suppression methods have been based on frequency filtering.
These methods, however, are less effective when the signal of interest and noise share
similar frequency bands. We implemented a seismic denoising method that uses a trained
deep convolutional neural network (CNN) model. In our approach, the CNN provides a signal
mask and a noise mask for an input signal. The Short-Time Fourier Transform (STFT) of the
estimated signal is obtained by multiplying the signal mask with the STFT of the input signal.
To build and test the denoiser, we used carefully compiled signal and noise datasets of
seismograms recorded by the University of Utah Seismograph Stations network (United
States). Results of test runs involving more than 9,000 constructed waveforms suggest that
on average the denoiser improves the SNRs by ~5 dB and that most of the recovered signal
waveforms have high similarity with respect to the target waveforms and suffer little
distortion. Application to real data suggests that our denoiser achieves on average a factor of
up to ~2-5 improvement in SNR over bandpass filtering and can suppress many types of
noise that bandpass filtering cannot.
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* Frequency filtering, commonly used for noise suppression, is ineffective when signal and noise share
the same frequency range.

® Frequency filtering is known to distort the signal, in some cases, making phase onsets and polarities
difficult to determine.

= Deep learning denoising is widely used in the field of music information retrieval for music source
separation (e.g., separation of singing voices from music accompaniment).
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R(t, f) = S(t, f) + N(&, f) = The network consists of an encoder
Denoiser and a decoder.

é By - For an input R(t,f), the network
| —Mst.f) provides a signal mask (M, (t,f)) and

R(t, f) g T . e, 1) a noise mask (M, (¢t,f)).
- The estimated ‘clean’ signal (S(t, f)) is
\ S/ obtained by multiplying M(t, f) with
$(t, f) = Ms(t, f) O R f) R(t, f); and the estimated noise
N(t f) = My(t. f) OR(t, f) (N(t, f)) is obtained by multiplying

My (t, f) with R(t, f).
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= The network consists of 20 hidden layers

= Half of the layers make up the encoder, and the

43:@ Conv2D + RelU + BN (batch norm.) Other half the deCOder
2 = Implemented using Keras on top of TensorFlow

&, i conn +sotmax = ~2.4 million trainable parameters
Yoncalenate .
= ~3K non-trainable parameters

P e
25x31x32,
13x16x32’
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®= The ‘clean’ signal dataset consists of 3,188 high-SNR Z-
component recorded at BRPU from local and near-regional
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earthquakes.
. . . Elko h
* The noise dataset contains 15,426 waveforms from various 'S w ey
. . . A
noise sources and various stations. NETS
& Network: UU
L. . L. . . Descnplion:eumér Ranch, Price, UT, USA old TA-

* The 2 datasets randomly divided into training, validation, A g N

and test sets using the ‘70-15-15’ convention. TR awa

A . ALK
. . =

= Noisy waveforms constructed by summing each ‘clean’ f LA

signal waveform and a randomly selected noise waveform. A7 An L A

This was repeated 20 times for each set, resulting in: L A -

Stations A A
o 44,620 waveforms for the training set, A ShortPeriod A & A
A strongMotion A XA
. . A Composite A A A
o 9,580 waveforms for the validation set, and Broadband o e
Non-UUSS-Network ‘ A A A

o 9,560 waveforms for the test set fom
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= Recovered waveforms are very similar to the = 9,560 constructed noisy waveforms of the test set
corresponding GTs (CC of 0.97-0.99). - The denoiser achieves an average improvement in SNR of ~5 dB.

= Recovered seismograms show little distortion with respect
to the GTs (SDR of 12.37-17.81 dB).
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Station: BRPU
(a) (b)

102 ASNR= 2.3(x 1.8) dB ASNR= 2.6(+ 2.4)dB | 102
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(c) SNR Difference (dB) SNR Difference (dB)

102 ASNR= 3.2(x 3.1) dB

= The denoiser achieves an average improvement in SNR of
Z ~2-3 dB over bandpass filter.
£ = The gap in performance increases with decreasing filter
bandwidth.
10°
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The values of the elements of the mask
operator vary with both time & frequency in the
range of 0-1.

The operator for a bandpass filter would
appear as a streak of 1’s within the passband.

The mask operator adapts to the changing
characteristics of the input signal.

This adaptability is undoubtedly the reason for
the observed edge of the denoiser over
bandpass filtering.
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Station: ZNPU Station: SPU
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* For the stations ZNPU and SPU, denoising achieved an average improvement of ~3-5 dB over bandpass filtering.
» The CNN model is transportable to other stations in Utah, and possibly also in neighboring regions.
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= We implemented a seismic denoising method that uses a trained deep CNN model to
decompose an input waveform into a signal of interest and noise.

= Test results based on more than 9,000 constructed waveform data suggest that most of the
waveforms recovered by the trained deep convolutional network show high degree of fidelity
to their respective GTs, in terms of both waveform similarity and amplitudes.

= Processing of real seismograms suggests that the denoiser achieves an average improvement in
SNR of ~5 dB and ~2-5 dB over the raw and bandpass filtered data, respectively.

= The CNN model also works well for UUSS stations not involved in model training, suggesting
that it is transportable around Utah, and possibly also to neighboring regions with similar wave

propagation characteristics and background noise.
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